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Fig. 1. Cross sections of the transmission lines. (a) Open single microstrip
line. (b) Open coupled microstrip line. (c) Open unilateral CPW. (d) Shielded
SML.
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? 35k : AT i Fig. 3. Frequency dependence of propagation characteristics for an open
3 =7 coupled microstrip line printed on the filled PTFE (odd modé; = 39,
E .

o

30, 50 100 150 infinitesimally thin strip, we only let the components of conductivity
Frequency in GHz (022, 0yy, 0-.) in a cell corresponding to the tangentiBHfields
Fig. 2. Frequency dependence for an open single microstrip line with to_ be infinite _whlle keeping the rest at zero. Oth_er\(vljse, for a finite-
the RGW and BHW truncationgN, = 110, N, = 30, ¢, = 13, Az = thickness strip, all components must be set to infinite. To model a
Ay =0.0125,h = 0.1, ¢ = 0, andw = 0.15 mm). PEC symmetric wall, we simply enforce the tangential electric fields

to be zero along the wall. However, to model a PMC wall, rather
than using image theory, in which the real and image fields are a
For generality, we assume that the relative permittivity, permeabilitiialf-cell away from the boundary [3], in a more accurate way, we set
and electric conductivity are characterized as a diagonal tensor. the tangential magnetic fields located at the centers of cells to zero.
By substituting (1) into the Maxwell’s equations, we obtain the Next, in order to eliminate the Gibbs phenomenon generated
compressed 2-D FDTD lattice and the expression of the 2-D updde a sudden truncation of time signals, which is equivalent to
equations, typically, whose-components are given by (2) and (3),adding a rectangular window (RGW) function onto the time-domain
shown at the bottom of the following page, whetes a specified signals, we use the BHW function [10] to modulate and truncate the
propagation constant. The stability of the 2-D FDTD algorithm ifield signals. Its extremely low sidelobe levels (less tha®2 dB)
ensured by choosing the time stég to satisfy the inequality sug- and smooth main beam guarantee that the ripples of the window
gested in [7]. Two types of absorbing boundary conditions (ABC'syidelobes will introduce little corruption into convoluted signals.
the first-order Mur’s and the dispersive ABC’s [8], [9], are used tdhe corresponding frequency-domain responses of the fields may be
terminate meshes at the boundaries of open structures. written as
It is crucial in implementing the 2-D FDTD algorithm to accurately _,,, W o0 .
model the PEC strips and symmetric walls for analyzing printe[&jf (@), H ()] :/0 [Er(r), Hi(D)[Whn (v = 7)d,
transmission lines. Two types of stripgz. the infinitesimally thin and I=z.9 2 (4)
the finite thickness, and two kinds of symmetric walls, i.e., perfectly
electric conductor (PEC) and perfectly magnetic conductor (PMGyherew is the radian frequencyE:(7), H(7)] denote the orig-
have been accurately modeled in this research. For modeling imal time-domain fields derived from the FDTD algorithm, and
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[E]" (w), H{ (w)] are their windowed version in the frequency Frequency in GHz
domain. Normally, the truncation with the RGW does not pose a b)

problem for a time response that decays sufficiently and rapidly in
time. However, such decay is relatively slow for resonant structurédg. 5. Frequency dependence of propagation characteristics for an open
and early truncation can lead to significant errors in results. unilateral CPW and a shielded SML (CPWY, = 105, Ny = 60,

. R . . . Ar =Ay=01h=w=1,s=0.5mm; SML: N, = 56, N, = 30,
Finally, we have built the discrete Fourier transform (DFT)_m OUR, = Ay = 0.125, a = 7, b = 3.75, w = h = ho = 0.75 mm). (a)
FDTD solver so that we can perform the DFT while updating the,;. (b) Magnitude ofZ.

FDTD iterations. For a known resonant frequenty the DFT is

defined as
IIl. NUMERICAL RESULTS
Ny—1 . i L. i
Ei(2nfo, i, j) = At Z E i, j)exp[—j2n fonAd], In th!s p.aper, V\{e have an'alyzed' various tran§m|ss!on I|ne§, as
= shown in Fig. 1, printed on anisotropic substrates including the filled

I=a,y, 2 (5) PTFE(cse = 6.64, ¢4, = 6.24,¢.. = 5.56) and boron nitride
(200 = 5.12, 24y = 3.4, .. = 5.12).
wherei = 0,1,2,...,N,,j =0,1,2,...,N,, and E} and Er Firstly, we would like to verify the effectiveness of the win-
denote the time-domain and frequency-domain fields, respectively{dow modulation and truncation method by analyzing an open mi-
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IV. CONCLUSION

An efficient 2-D FDTD algorithm has been applied for analyz-
ing printed transmission lines on various isotropic and anisotropic
substrates. The propagation characteristics has been studied by using
the concept of the transverse resonant properties of the guided-wave
structures, and the frequency-domain field images are obtained by
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Fig. 6. Images of the normalized electric fields for an open unilateral CPW
(t =0) at 3o = 500 and fo = 12.770 GHz. (a) E.. (b) Ey.
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crostrip line, as defined in Fig. 1(a). The magnitude of characteris{i%o]
impedanceg Z,) as a function of frequency for different numbers of
iteration steps is shown in Fig. 2. As seen from this figure, the BHW
modulation and truncation &; = 2000 leads to a smoother behavior

of Z,. Such results are even better than those generated by the RGW
with N, = 20000, in which the window size is ten times larger than
the BHW one. WithN; = 2000, the RGW introduces unacceptably
large errors. In this same figure, we also compare the computed results
with those obtained by using the 3-D FDTD technique [3], and we
observe a very good agreement within the frequency range of 25-75
GHz and a fairly good match from 75 to 150 GHz.

Next, we investigate an open coupled microstrip line, shown in
Fig. 1(b), printed on the filled polytetrafluoroethylene (PTFE). As
shown in Fig. 3, the propagation characteristicg and Z, of the
odd mode are clearly much more sensitive to the variation of strip
thickness than those of the even mode. We also display the normalized
transverse-field distribution for the odd mode at a specified frequency
in Fig. 4 fort = 0.

Finally, we analyze an open unilateral coplanar waveguide (CPW),
see Fig. 1(c), and a shielded suspended microstrip line (SML, see
Fig. 1(d), printed on the filled PTFE and on the boron nitrite,
respectively. As thet varies, the corresponding.s and Z, as
functions of frequency displayed in Fig. 5 have changed significantly.
It is found that theZ, of the SML is much sensible at the low
frequencies, while its counterpart of the CPW varies uniformly. The
electric field images of the CPW at a specified frequency with0
are displayed in Fig. 6.

using a DFT technique built in the FDTD solver.
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